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Abstract. We present FEMTO, a new system for indexing and search-
ing large collections of sequence data. We used FEMTO to index and
search three large collections, including one 182 GB collection. We com-
pare the performance of FEMTO indexing and search with Bowtie and
with Lucene, and we compare performance with indexes stored on hard
disks and in flash memory. To our knowledge, we report on the first
compressed suffix array storing more than 100 GB. Even for the largest
collection, most searches completed in under 10 seconds.
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1 Introduction

The FM-index of Ferragina and Manzini [8,9,10] is a remarkable structure for
string searching because it supports O(m) search, where m is the length of
the search pattern, while typically using less space than the original data. Fur-
thermore, the FM-index for n bytes of data can be constructed in O(n) time.
However, in practice, an FM-index - as well as other compressed suffix arrays
- must compete with more established techniques, such as Boyer-Moore [3] or
grep, which perform an O(n) scan of the data.

There are three problems with the typical compressed suffix array that make
it a poor choice for many information retrieval problems. The first problem is that
most implementations are not capable of handling very large collections. They
assume that the index fits into main memory or that 4 bytes are sufficient to store
offsets. Furthermore, a straightforward implementation of the FM-index for hard
disks will have poor performance since each search step requires millisecond-long
random access to the index.

The second problem is that, when compared to a tool like grep, compressed
suffix arrays offer limited flexibility. The implementations only return counts or
offsets. At the same time, many uses of an index only need a list of matching
documents. In addition, compressed suffix arrays only allow string search; there
is no support for regular expressions.

The third problem is that the indexing procedure is extremely slow for large
collections. Collections that cannot be indexed in main memory must be indexed
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on disk. Dementiev et al. demonstrated external-memory suffix array construc-
tion at 9.88 microseconds/byte, or about 100 KB/second [6]. Compare that rate
with the speed of scanning from disk - easily about 70 MiB/second 1.

We believe that we have made progress in solving these three problems.
We have created a system called FEMTO: the FM-index for External Memory
with Throughput Optimizations. It is an FM-index with some improvements
to make external memory operation faster. Our goal is to create an FM-index
that can compete better with the scanning approach for large, archival collec-
tions. FEMTO minimizes seeks to perform well in external memory, supports
more flexible usage including document retrieval and regular expression search,
and constructs indexes in parallel and in external memory at rates exceeding 1
MiB/second with 4 machines.

2 Background

We summarize the operation of an FM-index as in [10]. First, to index any
number of documents, concatenate the documents together to create an n-byte
text string T . The next step in the indexing process is to perform the Burrows-
Wheeler transform (BWT) on T [4]. Conceptually, form an n by n matrix from
all the rotations of the n-byte input string, and sort the rows of this matrix
lexicographically. This sorted matrix is called M . The BWT of the original n-
byte string is the last column of M , which is called L. The original input T can be
reconstructed from the L column using the last-to-first column mapping [4]. This
mapping, denoted LF , provides a mechanism for stepping backwards in the text.
That is, if row r begins with T [i..], LF (r) will give the index of the row beginning
with T [i− 1..]. The LF mapping can be computed entirely from information in
the L column. In particular, LF (i) = C[L[i]] +Occ(L[i], i)− 1, where C stores,
for each character, the number of characters less than that character in the entire
input, and Occ(ch, i) is the number of times the character ch appears at or before
row i in the L column.

Note that in practice, the BWT is computed by first building the suffix array
of the input string. It is straightforward to compute the L column from the suffix
array [4].

An FM-index stores the L column, the C array, information to help compute
Occ(L[i], i), and - for some fraction of marked rows - offset information. The FM-
index uses these structures to support two kinds of searches: count and locate.
Given a pattern of m bytes, the count search works in O(m) steps to find the
rows in the conceptual matrix M that begin with that pattern. The count search
simply returns the number of matching rows. A locate search finds the offset for
each matching row. Both of these methods find the range of rows beginning
with a particular pattern with the backward search method of Ferragina and
Manzini [10], which goes through the pattern backwards, maintaining the range
of matching rows, and uses a variant on the LF -mapping. To find the offset for
1 In this paper, we use the IEC binary prefixes: MB and GB mean 106 and 109 bytes;

MiB and GiB mean 220 and 230 bytes.
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a particular row, an FM-index applies the LF -mapping until a marked row is
reached [10]. We call each application of the LF -mapping a backward step.

3 The FEMTO Index

The FEMTO index is based on a combination of methods, including the FM-
index [8,10] and the Compressed Suffix Array [13]. Like other indexes, the
FEMTO index is made up of blocks. A FEMTO index has a single header block
and many data blocks. The header block stores the C array and the number
of occurrences of each character before the start of each data block. Each data
block contains buckets storing the L column and marking information as well
as the number of times each character appears before each bucket in the block.
The L column data is stored in a wavelet tree inside each bucket. This wavelet
tree structure provides a fast way of computing Occ(ch, i). We use our own im-
plementation of the wavelet tree described by Grossi, Gupta, and Vitter [13].
FEMTO marks character offsets i with i (mod k) = 0, for some parameter k
known as the mark period. FEMTO uses a succinct dictionary [13] to record
which rows are marked and stores the offsets for marked rows in a separate ar-
ray. Lastly, for each chunk of h rows, FEMTO stores the corresponding set of
document numbers.

3.1 High Throughput with External Memory

We assume that at any given time, FEMTO is processing several queries in
parallel. Each of these queries can be expressed as a sequence of requests. These
requests find a small unit of information - such as Occ(L[i], i). In order to service
one of these requests, the system must read the appropriate bucket from disk.
Once the bucket is loaded, the system can service any number of requests for
that bucket with no extra I/O cost. The search system keeps the requests in a
tree structure sorted by row. That way, it visits requests in row order in order
to avoid needing to re-read parts of the index. In addition, FEMTO processes
the sorted requests in multiple threads using a work-stealing strategy.

This method is new as suggested; compressed suffix array implementations
typically assume that they will process a single query at a time. Two implemen-
tations use related techniques to reduce the search time for a single query, as in
Grossi and Vitter [14] for reporting occurrences and in the FM-index version 2
for doing count queries with the mark character inserted [9].

Sorting requests provides an enormous reduction in the number of block cache
misses. After enabling request sorting during development, we observed about a
5000-fold reduction in the amount of I/O to perform 100,000 queries.

3.2 Bi-directional Locate

During a locate operation, FEMTO steps both forward and backward at the
same time to find a marked row. Backward step works in the usual manner,
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but forward step uses binary search on the header block and on a data block.
These forward and backward steps are continued independently until a marked
row is located. As a row range is stepped forward or backward, it becomes more
and more spread across the index. By stepping both forwards and backwards,
FEMTO reduces this spreading, leading to better cache performance. Note that
the complexity of this locate procedure remains O(k) index operations, assuming
that every kth character is marked. Early experiments showed that bi-directional
locate incurs about half the I/O of backward steps.

3.3 Improving Document Search Time

FEMTO employs a new scheme to improve the performance of queries for match-
ing documents, which we call locate documents queries. These queries do not
need to return the locations of matches within the documents - only the set of
matching documents. To improve these searches, FEMTO divides the index into
chunks of h rows. For each chunk, it stores a list of documents present in that
range of rows. When reporting the documents contained in an arbitrary range
of rows, FEMTO does the normal locate procedure for the results in the partial
first and last chunks. For each full chunk, it reads the set of matching documents
directly. The list of document numbers stored in each chunk is compressed using
standard information retrieval methods as in [21].

Assuming that each chunk can be read in a single block operation, the number
of block operations to locate the documents represented by r matching rows is
O(r/h + hk), where h is the chunk size and k is the mark period. This is an
improvement over the original O(rk) search time, and in practice it can mean
10-200x speedup when returning a large number of results.

These measures to improve document search time, especially when reporting
a very large number of documents, are important for applications that require
the entire list of matching documents, such as Boolean query processing. An
alternative approach would be to store the document numbers for each row in a
wavelet tree as described in [12]. In addition, Culpepper et al. extend that result
in order to directly compute the top k results, ranked by term frequency [5].
Although we were not able to perform a direct comparison, we believe that the
wavelet tree approaches create larger indexes - on the order of 3n bytes - while
the FEMTO indexes range from n/2 to 2n bytes.

3.4 Regular Expression Search

We have developed a regular expression search method for the FM-index which
is an analogue of the trie automaton search of Baeza-Yates et al. [1]. First,
take a regular expression and reverse it - e.g. ab(c*d |ef)g becomes g(dc* |fe)ba.
Then, compile it to a nondeterministic finite automaton (NFA) using Thomp-
son’s method [20]. Next, simulate the NFA on the compressed suffix array. The
simulation operates on a mapping from ranges of rows to automaton states. Each
step of the algorithm proceeds in a similar manner to the backward search; take
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a backwards step for each character on a transition from a current NFA state
and then add the resulting range of rows and state to the mapping.

simulate_nfa :
add the entry ([0, n-1] -> the set of start states) to mapping
while( the mapping is not empty ) :
pop an entry ([first, last] -> nfa_states) from the mapping
for every character ch reachable from nfa_states :
new_first = C[ch] + Occ(ch, first - 1)
new_last = C[ch] + Occ(ch, last) - 1
new_states=states reachable from nfa_states after reading ch
add ([new_first, new_last] -> new_states) to the mapping,

reporting a match if a final state is set

This algorithm has some desirable properties. First, exact string search pro-
ceeds as in backward search. Second, this algorithm is able to re-use a partial
match; for example when searching for (abc|def)xyz, the algorithm only com-
putes the range of rows matching xyz once. Note that this algorithm performs
at least z index operations, where z is the length of the longest match; thus
it is Ω(z). Furthermore, some regular expressions, such as the infinite wildcard
.∗, will cause the algorithm to visit every row in the index. Although this algo-
rithm is not appropriate for all regular expressions, it performs well with simple
regular expressions. Lastly, it is possible to modify this algorithm to support ap-
proximate queries by simulating approximate NFA search, although space does
not allow us to describe it in detail here. Our implementation of approximate
NFA search is based upon the approximate regular expression search of Wu and
Manber [22], but interacts with the index just like simulate nfa above.

3.5 Parallel External Memory Index Construction

We developed a parallel external-memory suffix array construction system, based
upon the difference cover algorithm [16]. Our independent implementation com-
bines the ideas of [17] and [6]. We observed linear performance indexing the
English corpus from the Pizza & Chili website [11]. In a 10-gigabit Ethernet
cluster using 3 disks per node, we measured 0.45 MiB/s on a single machine,
1.61 MiB/s on four machines, and 2.7 MiB/s on eight machines.

There are many notable alternative ways to construct an FM-index. First,
there are direct index construction schemes, such as [15] and [19], that require
memory space for the resulting compressed index. Also, Ferragina et al. present
in [7] a many-pass method to compute the BWT in external memory. Since this
many-pass method has I/O complexity O(n2/(MB log n)), it is only appropriate
for collections that are not much larger than main memory. Lastly, [2] shows how
to efficiently index many small documents, but their method works with fixed-
size documents and is quadratic in the document size - and so not applicable to
a large, varied collection. Nonetheless, we believe that future work along these
lines may lead to a generally useful direct-to-BWT external memory scheme.
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4 Experimental Methods

We report experiments with three different large data sets. The first is a col-
lection of bacterial sequence data from the National Center for Biotechnology
Information (NCBI) Genomes collection - totaling 3.8 GB. The second collection
is 43 GB containing all textual documents from Project Gutenberg collection.
The final collection is all 182 GB of sequence data from the NCBI Genomes
collection. To our knowledge, this is the first time that compressed suffix arrays
have been constructed for such large collections.

To construct our Gutenberg dataset, we created a local mirror of the Project
Gutenberg collection (http://www.gutenberg.org) in November 2011 and then
we selected only documents that the file command reported as text. We indexed
this collection with Apache Lucene Core 3.5.0 (http://lucene.apache.org)
for comparison. We modified the Lucene searching demonstration to give perfor-
mance timing and to only ever return 10 results. When searching for a pattern
containing multiple words, we used the phrase query mechanism in Lucene.

To construct the Genomes collection, we downloaded all .fna, .fa, .fasta,
.seq, .fsa, .ffn, .faa, .frn, and gzip compressed versions of those same files, in
November 2011, from ftp://ftp.ncbi.nih.gov/genomes. We then removed redun-
dant compressed files as well as symbolic links and ARCHIVE directories and
uncompressed the compressed files.

We constructed the Bacteria collection by taking files from the Bacteria sub-
directory of our Genomes collection, up to 3.76 GB. We limited the size in order
to compare with Bowtie2 (available at http://bowtie-bio.sourceforge.net)
[18]. Bowtie2 cannot currently create an index for more than 4 GiB of input
data. We used Bowtie 2.0.0-beta3. When searching with Bowtie, we used the
arguments –mm –sam-nosq –end-to-end -M 0 -N 0 -L 500 -i L,0,500 in addition
to the -x argument to specify the index and the -c argument to specify a search
pattern. We used these arguments in order to request exact matches and to
request that the index be memory mapped instead of read in at program start.

FEMTO indexes were constructed with a block size of 128 MiB, a bucket
size of 1MiB, a document chunk size of h = 2048, and a mark period of k = 20.

Because we are measuring external memory performance, we flushed the
Linux page cache between each experiment and performed an operation to clear
out hardware RAID and disk buffers. Then we performed a search for an un-
related term in order to make sure that any index headers or program images
were in cache. Finally, we performed the measured search. Thus, these search
performance numbers represent the time to get results when the search program
is cached but almost all of the index is not.

We performed experiments on two different systems. The first has an 8-disk
hardware RAID-6 array, 8-cores of Intel Xeon X5355 at 2.66 GHz, and 16 GiB of
memory. The second system has 8 flash memory devices configured in a hardware
RAID-5 array, 24 cores of Xeon X5670 at 2.93 GHz, and 24 GiB of memory.

http://www.gutenberg.org
http://lucene.apache.org
http://bowtie-bio.sourceforge.net
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Fig. 1. Gutenberg (42.94 GB) indexed search speeds. Note that the time to search with
grep is 559 s on disk, or 221 s on flash memory. Each query is limited to 10 results.

4.1 Results

FEMTO, Lucene, and Bowtie2 all create indexes for completely different pur-
poses: FEMTO is meant to support large, archival indexing and search of any
sequence data; Lucene indexes word data; and Bowtie2 was created for sequence
alignment. Nonetheless, it is useful to compare these systems to understand, as
a practical matter, in what situations a system such as FEMTO should be used.
Table 1 summarize index size and indexing time.

Table 1. Data set and index construction information. Bacteria was indexed with
Bowtie2, Gutenberg with Lucene. Genomes indexed with 7 machines. FEMTO indexes
sizes show optional document chunk structure; see Section 4.3.

Corpus Information Indexing time and index size

Size # Docs Bowtie2/Lucene FEMTO

Bacteria 3.76 GB 1896 16940 s 5.26 GB 7572 s 1.91 GB - 2.34 GB

Gutenberg 42.93 GB 94471 5133 s 14.84 GB 108025 s 19.83 GB - 40.87 GB

Genomes 182.43 GB 23242528 - 158434 s* 87.62 GB - 296.68 GB

Figures 1-3 show external memory search performance. Figure 1 shows that
FEMTO is not as fast as Lucene, but it is not far behind. Most patterns were
one word and returned exactly 10 matches. Note that the pattern of length 9
had no matches, the pattern of length 28 had only 3 matches, and that the
23-long pattern is two words and the 28-long pattern is three words. Lucene
search time depends on the number of words in the search - hence it increases
for the last two - while a FEMTO search depends more directly on the number of
characters. Observe that the time to identify matching rows - shown in the figure
in the white area labeled FEMTO-count - increases as the pattern size grows.
Searches backed by flash memory are noticeably faster for both systems, and
benefit FEMTO more than Lucene, since FEMTO is limited by disk seek speed.
Lastly, both systems are 100-1000x faster on disk than grep for this collection.
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As Figure 2 shows, FEMTO is competitive with Bowtie2 for single-query
exact-match searches. Bowtie2 was not designed for this kind of external memory
operation, but it is a BWT-based index like FEMTO. Bowtie2 performs exact
search about as quickly as FEMTO. For most of these searches, FEMTO is
slightly faster. Note that for both of these systems, the search time increases
as the pattern length grows. Lastly, for a collection of only 4GB, a scan of the
collection with grep is competitive with the time to do a search with either of
these indexes if the index is stored on disk; we measured grep to take 11.5 s
which is about the time it takes to run a 256-character query.
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Fig. 2. Bacteria (3.76 GB) indexed search speeds. Note that the time to search with
grep is 11.5 s on disk, or 6.12 s with flash memory. Each query returned only one result.
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Fig. 3. Genomes (182.43 GB) indexed search speeds. Note that the time to search this
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FEMTO scales to very large index sizes while still offering fast searches. Only
FEMTO was able to construct a sequence index for the Genomes collection. As
the left-hand side of Figure 3 shows, sequence queries still complete in seconds
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and take time proportional to the length of the query. Observe on the right-hand
side of Figure 3 that FEMTO search performance is approximately constant over
the range of collection sizes measured here - from 3.76 GB to 182 GB.

To demonstrate the capabilities of sorting requests, we also measured the per-
formance of serial and parallel count queries over randomly selected length-12
patterns in the Gutenberg data set. See Figure 4. The request sorting mechanism
offers better throughput on disk when processing many count queries simulta-
neously, but does not offer much of an advantage when the index is in memory.
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Fig. 4. Gutenberg (42.94 GB) indexed search speeds for many count queries. Note that
these plots are on log-log scale.

4.2 Approximate Search

The FEMTO query “APPROX constitutional” searches for all sequences within
edit distance 1 of “constitutional”. That query took 37.6 s on the disk system
and 2.41 s on the flash system. The analogous Lucene query, “constitutional˜”
took 103 s on the disk system and 96 s on the flash memory system. Thus,
FEMTO is quite a bit faster than Lucene at approximate search. Approximate
search is still fast even for our largest index - a 32 character search against the
Genomes index took 53.2 s with the disk system and 3.34 s with flash memory.

4.3 FEMTO Index Space

Table 2 shows how the space of each FEMTO index was used. Each column
shows index structures that support different features. Using only the data in
the BWT & Occs, the index supports finding the range of matching rows for
a pattern. Adding in the Offsets allows the index to report back the offsets of
matching rows, and the mark period (20) represents a time-space trade-off for
that operation. Finally, adding in the Doc Chunks allows the index to rapidly
report a large number of matching documents for large ranges of rows. This
kind of operation is important for searches which require follow-on processing,
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Table 2. FEMTO index statistics. Percentages show proportion of collection size.

Collection BWT & Occs Offsets Doc Chunks Total

Bacteria - 3.76 0.96 (25%) 0.94 (25%) 0.44 (11%) 2.34 (62%)

Gutenberg - 42.93 7.74 (18%) 12.00 (28%) 21.04 (49%) 40.87 (95%)

Gutenberg’ - 42.93 7.74 (18%) 12.00 (28%) 2.4594 (6%) 22.21 (52%)

Genomes - 182.43 32.97 (18%) 51.13 (28%) 209.06 (115%) 296.68 (163%)

such as Boolean queries. Note that without the document chunk information,
each of these indexes would be about 50% the size of the original collection.
The document chunks did not compress well in the larger collections, which
have orders of magnitude more documents than the chunk size of h = 2048.
To investigate further, we created a Gutenberg index with a h = 131072, listed
as Gutenberg’ in the table, that achieves much better compression. Thus, for
consistent compression, h should depend on the number of documents.

4.4 Reporting Results

We measured the speed of finding the offset or document for a varying num-
ber of rows in the Gutenberg index. These queries really show the ability for
FEMTO to minimize I/O operations. See Figure 5. With flash memory, we ob-
served locate speeds up to 7000 results/second and document locate speeds up
to 90,000 results/second. On disk, locate performed at up to 800 results/second
and document locate operated at up to 70,000 results/second. We believe that
the decrease in locate performance around 10,000 results comes from the work-
ing set no longer fitting into main memory. Also, note that for 10 million results,
the query processing data structures occupy 8 GiB of memory.
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FEMTO 11

5 Conclusion

We have demonstrated the feasibility of using an improved FM-index for large
sequence and document retrieval problems. We have demonstrated interactive
search times even with our largest collection. This index structure is very quick
to search - especially with flash memory - and supports regular expression and
sequence queries.

Availability. FEMTO source code is available at

https://github.com/femto-dev/femto .
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