
KHracker – Known Hosts Entry Decrypter
Written by Kevin Moore (kevinm@cert.org) & Matthew Geiger (mgeiger@cert.org)
Copyright (c) CERT, 2012 ALL RIGHTS RESERVED.

Requirements:

Python v2.6 or greater
 Netaddr python module (http://code.google.com/p/netaddr)

Application Details:

KHracker - Known Hosts Entry Decrypter
Copyright (c) CERT, 2012 ALL RIGHTS RESERVED.

KHracker is a python-based decryption tool for encrypted known_hosts entries. It will
attempt to decrypt values stored in SSH known_hosts files, if the encryption option has
been enabled for that computer. By default, known_hosts entries are not encrypted, but
there is an option to do so. From a forensics perspective, encrypted known_hosts entries
can prevent an investigator from seeing other computers a user may have been
connecting to. Information about the connections made from a system can be integral to
identifying a complete understanding of the systems involved in a network intrusion or
incident response case.

Known_hosts Entry Encryption:

Information on hostnames and public keys used in Secure Shell (SSH) connections are
stored in what is called the known_hosts file. On Linux/Unix systems information on the
computer(s) connected to via SSH is maintained in the user directory under:
~/.ssh/known_hosts.

SSH allows for the encryption of known_hosts entry values using OpenSSL. The values,
which indicate the computers a user connected to via SSH, are then obfuscated to hide
their original value. The mechanism used to encrypt/obfuscate the domain or IP address
is a SHA1 HMAC (Hash-based Message Authentication Code) of a salt value combined
with the domain/IP address value. The salt and SHA1 HMAC encrypted value are both
base64 encoded and stored in the known_hosts file. The values in an encrypted
known_hosts file will appear similar to the following:

|1|zGIqIiAMo03vd9KZA7OQR4oeXgc=|Ar+irD9Q1WQ3UTCvc92hLF3q5+E= ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAQEA[removed]

Values in the file are separated by the pipe (|) value. The section highlight in blue is the
salt value for this entry. The section highlighted in red is the SHA1 HMAC encrypted
value of salt combined with the domain/IP address for the connection entry. Both values

are base64 encoded and stored as an entry in the known_hosts file. The value following
the SHA1 HMAC value is the public key [truncated] used for the SSH connection.

KHracker Features:

KHracker attempts to decrypt values stored in the target known_hosts file by comparing
SHA1 HMAC values to those stored in the known_hosts file. The script provides three
options for decrypting the values: brute-force, input-file list, and bulk_extractor export
processing.

Brute-force attack: attempts all, or a specified range, of IPv4 addresses. Brute-force
attacks support multiprocessing to increase the number of entries attempted per second.
By default, the script will utilize all available CPU cores, but that can be limited if the
user specifies. Brute-forcing is the slowest of the options, but will test every valid IP
address. The user can also limit the IP addresses attempted based on the command line
options specified (see help output).

Input file list: Because brute-force attacks may be unfruitful or an attacker may have
connected to a system via a hostname rather than an IP address, using a list containing
domain or IP addresses of interest may be the most efficient and beneficial mode of
attack. The user can generate a list of domains/IP addresses from a disk image or network
traffic and attempt each value against those stored in the known_hosts file. This is a much
quicker testing mechanism and does not support multiprocessing.

bulk_extractor Output: bulk_extractor is a tool developed by Simson Garfinkel
(http://afflib.org/software/bulk_extractor). From the bulk_extractor website:
“bulk_extractor is a C++ program that scans a disk image, a file, or a directory of files
and extracts useful information without parsing the file system or file system structures.”
One of the features of bulk_extractor is the collection of domain, IP address and TCP
connection information. If the user has run bulk_extractor against an image, the features
of KHracker allow the user to point the script at the bulk_extractor export folder.
KHracker will then generate a list of domain/IP addresses to test against the encrypted
values in the known_hosts file. This method also does not support multiprocessing.

KHracker Usage:

You must first install netaddr (http://code.google.com/p/netaddr) and Python v2.6 or
greater in your operating system of choice.

To make KHracker executable in Linux/Unix/Mac run the following command:
chmod +x KHracker.py

To view KHracker’s options run the help command at the command line:
./KHracker.py –h
This will display the options available and expected syntax of the application.

To run a brute-force attack on all standard, non-reserved IP addresses, run the following
command and you should see output similar to that pictured below:
./KHracker.py <known_hosts_file_location>

Notice that the script is using 4 processors. This indicates that the computer running the
application has 4 CPU cores that will each be utilized for the brute-force attack on the
encrypted entries.

To run a brute-force attack on an IP range, specify the starting IP address and ending IP
address with the –s and –e options respectively:
./KHracker.py <known_hosts_file_location> -s <starting_IP>
-e <ending_IP>

To run an input file attack on a list of IP addresses and domain names, use the –f option
and specify the input to read entries from (one entry per line):
./KHracker.py <known_hosts_file_location> -f <input_file>

To run an attack using the output from bulk_extractor, use the –b option and specify the
folder containing bulk_extractor output. The script will process the relevant output files
and generate a list to test values with:
./KHracker.py <known_hosts_file_location>
-b <bulk_extractor_export_folder>

Notice that both the bulk_extractor and input_file options utilize only one CPU core.
These options do not support multiprocessing in the current release.

If an entry is identified, it will display the value to the screen, similar to the following:

Decrypted entries will also be saved in a file named ‘decrypt_log.txt’ stored in the same
location as where KHracker was run from. The image below shows an entry in the
decrypt_log.txt file.

Logging entries can be disabled using command line options for sensitive situations
where maintaining a log of entries is not preferred. While this option is available, it is not
recommended as it could result in finding an entry, but not maintaining a record of it.

KHracker Help Output:

Brute-Force IP Addresses:
 KHracker.py <known_hosts_file> [options]
Read Input File of IPs/Hostnames:
 KHracker.py <known_hosts_file> [options] --read-file=<input_file>
Read Bulk Extractor Export Folder:
 KHracker.py <known_hosts_file> [options] --bulk-extractor=<input_folder>

Known Hosts Entry Decrypter. Copyright (c) CERT, 2012 ALL RIGHTS RESERVED.
Written by Kevin Moore (kevinm@cert.org) and Matthew Geiger (mgeiger@cert.org)

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -b BULK, --bulk-extractor=BULK
 Bulk Extractor export folder for parsing IP/Hostname
 from output files
 -c CORES, --cores=CORES
 Number of CPU Cores to Use - Default is ALL on system.
 Not for use with Input File or Bulk Extractor Data,
 Brute Force Only
 -d, --disable-log Disable decrypted data output log.
 Console output only - NOT RECOMMENDED
 -e END_IP, --end-ip=END_IP
 Ending IP Address for Brute-Force attacks
 -f READ_FILE, --read-file=READ_FILE
 Processes IP Addresses/Hostnames from list in file
 -p PORTS, --ports=PORTS
 Processes IP/Hostname with Port Numbers
 (i.e. 192.168.1.1:1000)
 Enter Range or List (i.e. 1-1024,6666,7777).
 Leave blank for all ports (1-65535) -
 SIGNIFICANTLY INCREASES PROCESSING TIME!
 -s START_IP, --start-ip=START_IP
 Starting IP Address for Brute-Force attacks

 IP Address Specifications:
 Options for filtering IP addresses during Brute-Force processing ONLY
 -i, --private Exclude private IP addresses
 (10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16)
 -k, --link-local Include link local addresses (169.254.0.0/16)
 -l, --loopback Include Loopback address space (127.0.0.0/8)
 -m, --multicast Include multicast IP addresses
 (224.0.0.0 to 240.0.0.0)
 -r, --reserved Include reserved IPs addresses (over 240.0.0.0)

